PTIP promotes DNA double-strand break repair through homologous recombination
نویسندگان
چکیده
منابع مشابه
SnapShot: Homologous Recombination in DNA Double-Strand Break Repair
Homologous recombination (HR) provides an important mechanism to repair both accidental and programmed DNA double-strand breaks (DSBs) during mitosis and meiosis. Defects in HR are associated with mutagenesis and predispose to cancer, highlighting the importance of this pathway for preserving genome integrity (Moynahan and Jasin, 2010). HR is active in the S and G2 phases of the cell cycle wher...
متن کاملDouble-strand break repair and homologous recombination in Schizosaccharomyces pombe.
The study of double-strand break repair and homologous recombination in Saccharomyces cerevisiae meiosis has provided important information about the mechanisms involved. However, it has become clear that the resulting recombination models are only partially applicable to repair in mitotic cells, where crossover formation is suppressed. In recent years our understanding of double-strand break r...
متن کاملCTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair
The repair of DNA double-strand breaks (DSBs) is mediated via two major pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR) repair. DSB repair is vital for cell survival, genome stability, and tumor suppression. In contrast to NHEJ, HR relies on extensive homology and templated DNA synthesis to restore the sequence surrounding the break site. We report a new role for th...
متن کاملDNA Double-Strand Break Repair
ownloade C regulates a myriad of genes controlling cell proliferation, metabolism, differentiation, and apoptosis. lso controls the expression of DNA double-strand break (DSB) repair genes and therefore may be a ial target for anticancer therapy to sensitize cancer cells to DNA damage or prevent genetic instability. report, we studied whether MYC binds to DSB repair gene promoters and modulates...
متن کاملDNA double-strand break repair
The integrity of genomic DNA is crucial for its function. And yet, DNA in living cells is inherently unstable. It is subject to mechanical stress and to many types of chemical modification that may lead to breaks in one or both strands of the double helix. Within the cell, reactive oxygen species generated by normal respiratory metabolism can cause double-strand breaks, as can stalled DNA repli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genes to Cells
سال: 2010
ISSN: 1356-9597,1365-2443
DOI: 10.1111/j.1365-2443.2009.01379.x